Posted on

Basalt Mesh Fabrics

Mesh Fabric, made from Basalt fiber

As its preferred use is in outdoor applications, it is also considered to be a Geotextile.

Technically, not all meshes are woven; the first picture is a leno woven, but picture two, three & five are not woven;

Following advantages make this product superior over an E-Glass Mesh: 

  • Ecologically safe
  • Withstands very high temperature of molten asphalt
  • Very high strength and durability
  • Alkali-resistant and chemically inert
  • Corrosion-resistant
  • Will not damage tires if exposed to road surface
  • 2.7 times lighter than metallic mesh, for easier handling and reduced transport costs
  • Up to 47% increase in asphalt surface life on roads and highways.

Basalt Geo-Mesh is also ideal for soil and embankment stabilization and land-fill coverings, due to its high strength and environmental and ecological safety.

Meshes can be offered with and without resin coatings.

Standard constructions:

5mm x 5mm (1/4″ x 1/4″) squares

10mm x 10 mm (3/8″ x 3/8″) squares

25mm x 25 mm (1″ x 1″) squares

50mm x 50 mm (2″ x 2″) squares

Additional Technical information:

Technical Data Sheet

Basalt Meshes

Window Sizes 5mm, 10mm, 25mm, 50mm

 

Window Size 5mm 10mm 25mm 50mm
Total Weight/ Area 220 grams/sq. meter 110 grams/sq. meter 350 grams/sq. meter 370 grams/sq. meter
6.5oz./sq. yard 3.85oz./sq. yard 10.26oz./ sq. yard 10.85oz./ sq. yard
Weight Resin Coating 20 grams/sq. meter 10 grams/sq. meter 36 grams/sq. meter 38 grams/sq. meter
0.7oz./sq. yard 0.35oz./sq. yard 1.3oz./sq. yard 1.35oz./sq. yard
Thickness 0.6-0.7 mm 0.6-0.7 mm .08-.09 mm .08-.09 mm
0.021-0.025 in. 0.021-0.025 in. 0.032-0.035 in. 0.032-0.035 in.
Maximum Load-Warp 48,000N/meter 24,000N/meter 80,780N/meter 114,000N/meter
3,290lb. force/ foot 1,645lb. force/ foot 8,483lb. force/ foot 7,813lb. force/ foot
Maximum Load-Weft 45,000N/meter 20,000N/meter 78,900N/meter 86,000N/meter
3,084lb. force/ foot 1,371lb. force/ foot 5,415lb. force/ foot 5,894lb. force/ foot
Elongation at break-Warp 6.67 % 6.67 % 6.67 % 6.67 %
Elongation at break-Weft 3.53 % 3.53 % 3.53 % 3.53 %
Breaking Elongation-Warp 13.54 mm 13.34 mm 13.34 mm 13.34 mm
0.53 inch 0.53 inch 0.53 inch 0.53 inch
Breaking Elongation-Weft 7.07 mm 7.07 mm 7.07 mm 7.07 mm
0.28 inch 0.28 inch 0.28 inch 0.28 inch
Standard Roll Dimensions 1 meter x50 meters 1 meter x50 meters 1 meter x50 meters 1 meter x50 meters
3.28 ft. x 164 ft. 3.28 ft. x 164 ft. 3.28 ft. x 164 ft. 3.28 ft. x 164 ft.

Different widths and roll lengths available on special order

Posted on

About Multi Axial Fabrics

Multi-Axial Fabrics consists of a numerous amount of layers stitched together.

Each single layer may be of a different, individual construction, whereas it can be a woven fabric, a unidirectional fabric or any other version. The choice of materials may be different. E.g. it could be a combination of Glass & Basalt

, or Carbon & Kevlar & Glass.

In Multi-Axial Fabrics, often the manufacturer takes advantage of positioning the layers of fabric to where the main fiber direction points into a different angle to the previous or the following layer.

This allows for optimal utilization of the fiber properties, in most cases the strength requirements.

Following graph illustrates one example of a Muli-Axial Fabric:

3

 

A four layer Multi-Axial Fabric would be called a Quadraxial fabric. it Can have the main fiber direction of the layers point in 3 or four different directions (degrees).

2

 

The following graph illustrates the necessary stitching-assembly process.

1

Curtesy of netcomposites.com

 

Posted on

Carbon Fiber – Applications

AEROSPACE

Rising fuel costs, environmental regulations and an increase in airline traffic have helped drive the increasing use of composite materials in the aerospace industry. Composites are used in military, business and commercial aircraft of all sizes, including spacecraft.

ARCHITECTURE

The architecture community is experiencing substantial growth in the understanding and use of composites. Composites offer architects and designers performance and value in large-scale projects and their use is increasing in commercial and residential buildings.

AUTOMOTIVE

The automotive industry is no stranger to composites. In addition to enabling groundbreaking vehicle designs, composites are also being used to reduce vehicle weight and cut CO2 emissions.

ENERGY

New advancements in composites are redefining the energy industry. Composites help enable the use of wind and solar power and improve the efficiency of traditional energy suppliers.

INFRASTRUCTURE

Composites are used all over the world to help construct and repair a wide variety of infrastructure applications, from buildings and bridges to roads to and railways.

MARINE

The marine industry has experienced a steady rise in the use of composites. In addition to helping hulls be lighter and more damage-resistant, composites can be found in many more areas of a maritime vessel–from interior moldings to furniture on super yachts.

MILITARY

Military-grade composites are used in a number of applications for their low weight, long life and ability to help protect people and equipment from harm. Aerial drones, armored fighting vehicles, submarines and body armor can contain composites materials.

SPORTS & RECREATION

From football helmets to hockey sticks to kayaks to bobsleds, composite materials help athletes reach their highest performance capabilities and provide durable, lightweight equipment for weekend warriors.

Posted on

About Carbon Fibers

Source: Wikipedia

Carbon fibers or carbon fibres (alternatively CF, graphite fiber or graphite fibre) are fibers about 5–10 micrometres in diameter and composed mostly of carbon atoms.

To produce a carbon fiber, the carbon atoms are bonded together in crystals that are more or less aligned parallel to the long axis of the fiber as the crystal alignment gives the fiber high strength-to-volume ratio (making it strong for its size). Several thousand carbon fibers are bundled together to form a tow, which may be used by itself or woven into a fabric.

The properties of carbon fibers, such as high stiffness, high tensile strength, low weight, high chemical resistance, high temperature tolerance and low thermal expansion, make them very popular in aerospace, civil engineering, military, and motorsports, along with other competition sports. However, they are relatively expensive when compared with similar fibers, such as glass fibers or plastic fibers.

Carbon fibers are usually combined with other materials to form a composite. When combined with a plastic resin and wound or molded it forms carbon-fiber-reinforced polymer (often referred to as carbon fiber) which has a very high strength-to-weight ratio, and is extremely rigid although somewhat brittle. However, carbon fibers are also composited with other materials, such as graphite, to form carbon-carbon composites, which have a very high heat tolerance.

Posted on

Carbon Fiber – History

Source: "Wikipedia"

History[edit]

In 1860 Joseph Swan produced carbon fibres for the first time, for use in light bulbs.[1]

In 1879, Thomas Edison baked cotton threads or bamboo slivers at high temperatures carbonizing them into an all-carbon fiber filament used in one of the first incandescent light bulbs to be heated by electricity.[2] In 1880, Lewis Latimer developed a reliable carbon wire filament for the incandescent light bulb, heated by electricity.[3]

In 1958, Roger Bacon created high-performance carbon fibers at the Union Carbide Parma Technical Center, now GrafTech International Holdings, Inc., located outside of Cleveland, Ohio.[4] Those fibers were manufactured by heating strands of rayon until they carbonized. This process proved to be inefficient, as the resulting fibers contained only about 20% carbon and had low strength and stiffness properties. In the early 1960s, a process was developed by Dr. Akio Shindo at Agency of Industrial Science and Technology of Japan, using polyacrylonitrile (PAN) as a raw material. This had produced a carbon fiber that contained about 55% carbon. In 1960 Richard Millington of H.I. Thompson Fiberglas Co. developed a process (US Patent No. 3,294,489) for producing a high carbon content (99%) fiber using rayon as a precursor. These carbon fibers had sufficient strength (modulus of elasticity and tensile strength) to be used as a reinforcement for composites having high strength to weight properties and for high temperature resistant applications

The high potential strength of carbon fiber was realized in 1963 in a process developed by W. Watt, L. N. Phillips, and W. Johnson at the Royal Aircraft Establishment at Farnborough, Hampshire. The process was patented by the UK Ministry of Defence, then licensed by the NRDC to three British companies: Rolls-Royce already making carbon fiber, Morganite, and Courtaulds. Within a few years, after successful use in 1968 of a Hyfil carbon-fiber fan assembly in the Conways of the Vickers VC10s operated by BOAC,[5]Rolls-Royce took advantage of the new material's properties to break into the American market with its RB-211 aero-engine with carbon-fiber compressor blades. Unfortunately, the blades proved vulnerable to damage from bird impact. This problem and others caused Rolls-Royce such setbacks that the company was nationalized in 1971. The carbon-fiber production plant was sold off to form "Bristol Composites".

In the late 1960s, the Japanese took the lead in manufacturing PAN-based carbon fibers. The 1970 joint technology agreement allowed Union Carbide to manufacture the Japan’s Toray Industries superior product and United States to dominate the market. Morganite decided that carbon-fiber production was peripheral to its core business, leaving Courtaulds as the only big UK manufacturer. Continuing collaboration with the staff at Farnborough proved helpful in the quest for higher quality and improvements in the speed of production as Courtaulds developed two main markets: aerospace and sports equipment. However Courtaulds's big advantage as manufacturer of the "Courtelle" precursor now became a weakness. Courtelle's low cost and ready availability were potential advantages, but the water-based inorganic process used to produce it made the product susceptible to impurities that did not affect the organic process used by other carbon-fiber manufacturers.

Nevertheless, during the 1980s Courtaulds continued to be a major supplier of carbon fiber for the sports-goods market, with Mitsubishi its main customer until a move to expand, including building a production plant in California, turned out badly. The investment did not generate the anticipated returns, leading to a decision to pull out of the area and Courtaulds ceased carbon-fiber production in 1991. Ironically the one surviving UK carbon-fiber manufacturer continued to thrive making fiber based on Courtaulds's precursor. Inverness-based RK Carbon Fibres Ltd concentrated on producing carbon fiber for industrial applications, removing the need to compete at the quality levels reached by overseas manufacturers.

During the 1960s, experimental work to find alternative raw materials led to the introduction of carbon fibers made from a petroleum pitch derived from oil processing. These fibers contained about 85% carbon and had excellent flexural strength. Also, during this period, the Japanese Government heavily supported carbon fiber development at home and several Japanese companies such as Toray, Nippon Carbon, Toho Rayon and Mitsubishi started their own development and production. As they subsequently advanced to become market leaders, companies in USA and Europe were encouraged to take up these activities as well, either through their own developments or contractual acquisition of carbon fiber knowledge. These companies included Hercules, BASF and Celanese USA and Akzo in Europe.

Since the late 1970s, further types of carbon fiber yarn entered the global market, offering higher tensile strength and higher elastic modulus. For example, T400 from Toray with a tensile strength of 4,000 MPa and M40, a modulus of 400 GPa. Intermediate carbon fibers, such as IM 600 from Toho Rayon with up to 6,000 MPa were developed. Carbon fibers from Toray, Celanese and Akzo found their way to aerospace application from secondary to primary parts first in military and later in civil aircraft as in McDonnell Douglas, Boeing and Airbus planes. By 2000 the industrial applications for highly sophisticated machine parts in middle Europe was becoming more important.

Further manufacturing capacity has been added since the year 2000. Major production plants have started up in Turkey, China and South Korea.

he global demand on carbon fiber composites was valued at roughly US$10.8 billion in 2009, which declined 8–10% from the previous year. It is expected to reach US$13.2 billion by 2012 and to increase to US$18.6 billion by 2015 with an annual growth rate of 7% or more. Strongest demands come from aircraft & aerospace, wind energy, as well as from the automotive industry[7] with optimized resin systems.[8]

Posted on

S-Glass Applications – Aerospace

Click below links for Aerospace

S-Series_High_PerfMatlsforCompositeAppls-IndustrialAerospaceDefense

GLARE_Laminate-Aerospace

933_S-2_Yarn-Aerospace

933_S-2_Roving-Aerospace

636_S-2_Yarn-Aerospace

463_S-2_Roving-Aerospace_and_Defense

449_S-2-Aerospace

Posted on

Application – Basalt Wovens

Basalt-Wovens

Basalt Standard Fabrics in general can be applied where E-Glass, sometimes S-Glass or Carbon Fabrics can be used, as well. As Basalt is more expensive than E-Glass, but cheaper than Carbon Fibers, typically it finds implementations, more suitable to its particular properties and fills an important gab when it comes to cost-performance ratios.

You can find a comparison to E-Glass, S-Glass or other materials by clicking here: Basic Comparison To Other Fibers.

Knowing how Basalt compares to other fibers allow to precisely engineer an optimal solution, which could also be in form of a hybrid (combining Basalt with other Fibers made from Glass, Carbon, Kevlar, etc.)

An Example of an Engineered FRP. 

In Fiber Reinforced Products (FRP) the engineer chooses the fiber, based on the desired outcome. E.g. if lighter weight requirements at identical strength to currently used fibers are required or if higher strengths are necessary while staying within the weight specifications.

There are other examples relevant to durability, corrosion resistances, break strength, chemical resistances, thermal applications, etc.

Our Team will be more than glad to assist or consult with design applications.

Standard Fabrics

Main application markets are

  • Geotextiles
  • Thermal applications
  • FRP (Fiber Reinforcement Products)

Standard offering: 

Weights: 3.2 oz/syd – 28 oz/syd

Widths: 19″ – 54″

Length: 26 yd – 500 yd

 OLYMPUS DIGITAL CAMERA  OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA   mesh1

Posted on

Definition Chopped Strand Mat

Example Basalt Chopped Strand Mat:

Basalt Chopped Strand Mat in general can be applied where E-Glass, sometimes S-Glass or Carbon Fibers can be used, as well. As Basalt is more expensive than E-Glass, but cheaper than Carbon Fibers, typically it finds implementations, more suitable to its particular properties and fills an important gab when it comes to cost-performance ratios.

You can find a comparison to E-Glass, S-Glass or other materials by clicking here: Basic Comparison To Other Fibers.

Knowing how Basalt compares to other fibers allow to precisely engineer an optimal solution, which could also be in form of a hybrid (combining Basalt with other Fibers made from Glass, Carbon, Kevlar, etc.)

An Example of an Engineered FRP. 

In Fiber Reinforcement Products (FRP) the engineer chooses the fiber, based on the desired outcome. E.g. if lighter weight requirements at identical strength to currently used fibers are required or if higher strengths are necessary while staying within the weight specifications.

There are other examples relevant to durability, corrosion resistances, break strength, chemical resistances, thermal applications, etc.

Applications: 

  • surfboards
  • boats
  • vessels
  • pipes
  • containers
  • panels

 

OLYMPUS DIGITAL CAMERA

Posted on

Definition – Surface Veils

Surface Veils are considered to be Nonwovens, some may call them matts, as well. They are typically very fine or thin.

A veil consists of chopped fibers which are randomly, chemically bonded.

The advantages of using a veil are

  • to "even-out" surfaces, e.g. when using heavier materials which would leave an unwanted print or pattern behind when making molds or parts,
  • control the resin penetration in multi-layer constructions,
  • aid in surface sanding,
  • aid in bonding multiple layers when placed in between

Always make sure to test the resin compatibilities before use, because your lamination may come apart quickly.

 

Posted on

Basalt – Air texturized

Basalt fibers can be air-texturized

... more about the process of air-texturizing

Texturizing Basalt can be interesting from many points of views:

  • The texturizing process allows to blend basalt with other technical fibers, such as E-Glass, S-Glass, Carbon, Kevlar, etc. Those then can be woven, braided, knitted, chopped, etc.
  • The fiber becomes more bulky and can store more air between the filaments. This increases the insulation values
  • Texturized fabrics, braids, knitted goods etc, have increased abrasion resistances
  • In composite applications, it may alter the dry-time or wet-out time.

In many cases, the texturized basalt fiber will experience additional value added steps, therefore the

Aapplication ideas are: 

  • chopping
  • extrusion
  • braiding
  • knitting
  • knit braiding
  • twisting
  • weaving

 

Posted on

Basalt Roving

The Density:

Basalt Rovings typically start a around 270 tex (18 h.y.p.p) and can exceed 4,800 tex (1.04 h.y.p.p).

Note: tex means (grams/1,000 meter), h.y.p.p means (hundred yard per pound)

The Twist:

Rovings have a very low or mostly zero twist. For the most part, they are woven in from a creel, but they certainly can be warped, as well. In general, do not require to be slashed. .... read more about slashing here

The Filament Size:

For the most part, roving filament diameters start at 9 microns and go up to around 24 microns.

Rovings are multi-filaments and a strand consist of hundreds of single filaments.

If a manufacturer elects to make a roving based on 9 mcm, they need to have more single filaments to build up the desired density as if they were to use e.g. 18 micron. In fact, they would need half as many filaments.

The filament size largely determines the flexibility of the strand. Therefore, the choice of filament size depends on the application.

The scale of economics: 

Due to a larger micron size/ filament, the output is larger than with smaller filament sizes. For that reason, rovings can be produced cheaper than the yarns.

Assembled Rovings:

Sometimes, manufacturers assemble rovings. In this case, they first manufacturer e.g. two bobbins of 1,200 tex and then later put them together on a new bobbin and create a 2,400 tex roving.

Sizings:

Sizings are also called binders. When extruding the fiber, the manufacturer sprays a chemical on the strand of filaments which has the purpose to

  • keep the fiber flexible,
  • mechanically protect it for upcoming textile or other processes,
  • allow, enhance the adhering process with resins or coatings,
  • create other additional properties.

For that reason, it is important to make sure to verify the resin compatibility for the intended application or textile process.

TIP: When testing samples, make sure you buy from the same source, as the outcome may differ, based on the chosen source!

Posted on

Basalt Application – Composites CNC

Given the right form, basalt can be also machined with CNC equipment.

The picture illustrates a basalt board which we asked to get machined in a shop in USA.

This allows for a lot more applications and to venture into completely new markets.

E.g. Gaskets for motors, appliances, doors, ovens, or for  insulation of pipes, just to mention a few.

The board we offer can certainly also be dye-cut or cut with a "box cutter".